3.4.80 \(\int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [380]

3.4.80.1 Optimal result
3.4.80.2 Mathematica [C] (warning: unable to verify)
3.4.80.3 Rubi [A] (verified)
3.4.80.4 Maple [B] (warning: unable to verify)
3.4.80.5 Fricas [B] (verification not implemented)
3.4.80.6 Sympy [F]
3.4.80.7 Maxima [F]
3.4.80.8 Giac [B] (verification not implemented)
3.4.80.9 Mupad [F(-1)]

3.4.80.1 Optimal result

Integrand size = 25, antiderivative size = 109 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )}{f}+\frac {(2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{2 \sqrt {a+b} f}-\frac {\cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)}}{2 f} \]

output
-arctanh((a+b*sec(f*x+e)^2)^(1/2)/a^(1/2))*a^(1/2)/f+1/2*(2*a+b)*arctanh(( 
a+b*sec(f*x+e)^2)^(1/2)/(a+b)^(1/2))/f/(a+b)^(1/2)-1/2*cot(f*x+e)^2*(a+b*s 
ec(f*x+e)^2)^(1/2)/f
 
3.4.80.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.91 (sec) , antiderivative size = 527, normalized size of antiderivative = 4.83 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos (e+f x) \left (\frac {1+e^{2 i (e+f x)}}{\left (-1+e^{2 i (e+f x)}\right )^2}-\frac {-2 i \sqrt {a} \sqrt {a+b} f x+(2 a+b) \log \left (1-e^{2 i (e+f x)}\right )+\sqrt {a} \sqrt {a+b} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+\sqrt {a} \sqrt {a+b} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-2 a \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-b \log \left (a+b+a e^{2 i (e+f x)}+b e^{2 i (e+f x)}+\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )}{\sqrt {a+b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \sqrt {a+b \sec ^2(e+f x)}}{\sqrt {2} f \sqrt {a+2 b+a \cos (2 e+2 f x)}} \]

input
Integrate[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + 
f*x))]*Cos[e + f*x]*((1 + E^((2*I)*(e + f*x)))/(-1 + E^((2*I)*(e + f*x)))^ 
2 - ((-2*I)*Sqrt[a]*Sqrt[a + b]*f*x + (2*a + b)*Log[1 - E^((2*I)*(e + f*x) 
)] + Sqrt[a]*Sqrt[a + b]*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqr 
t[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + Sqrt[a]*Sqrt 
[a + b]*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]* 
Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 2*a*Log[a 
 + b + a*E^((2*I)*(e + f*x)) + b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4* 
b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - b*Log[a + b + a* 
E^((2*I)*(e + f*x)) + b*E^((2*I)*(e + f*x)) + Sqrt[a + b]*Sqrt[4*b*E^((2*I 
)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]])/(Sqrt[a + b]*Sqrt[4*b*E^(( 
2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt[a + b*Sec[e + f*x] 
^2])/(Sqrt[2]*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])
 
3.4.80.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4627, 354, 110, 27, 174, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (e+f x)^2}}{\tan (e+f x)^3}dx\)

\(\Big \downarrow \) 4627

\(\displaystyle \frac {\int \frac {\cos (e+f x) \sqrt {b \sec ^2(e+f x)+a}}{\left (1-\sec ^2(e+f x)\right )^2}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 354

\(\displaystyle \frac {\int \frac {\cos (e+f x) \sqrt {b \sec ^2(e+f x)+a}}{\left (1-\sec ^2(e+f x)\right )^2}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 110

\(\displaystyle \frac {\frac {\sqrt {a+b \sec ^2(e+f x)}}{1-\sec ^2(e+f x)}-\int -\frac {\cos (e+f x) \left (b \sec ^2(e+f x)+2 a\right )}{2 \left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)}{2 f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{2} \int \frac {\cos (e+f x) \left (b \sec ^2(e+f x)+2 a\right )}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)+\frac {\sqrt {a+b \sec ^2(e+f x)}}{1-\sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 174

\(\displaystyle \frac {\frac {1}{2} \left ((2 a+b) \int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)+2 a \int \frac {\cos (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}d\sec ^2(e+f x)\right )+\frac {\sqrt {a+b \sec ^2(e+f x)}}{1-\sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {\frac {1}{2} \left (\frac {2 (2 a+b) \int \frac {1}{\frac {a+b}{b}-\frac {\sec ^4(e+f x)}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}+\frac {4 a \int \frac {1}{\frac {\sec ^4(e+f x)}{b}-\frac {a}{b}}d\sqrt {b \sec ^2(e+f x)+a}}{b}\right )+\frac {\sqrt {a+b \sec ^2(e+f x)}}{1-\sec ^2(e+f x)}}{2 f}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {1}{2} \left (\frac {2 (2 a+b) \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a+b}}\right )}{\sqrt {a+b}}-4 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+b \sec ^2(e+f x)}}{\sqrt {a}}\right )\right )+\frac {\sqrt {a+b \sec ^2(e+f x)}}{1-\sec ^2(e+f x)}}{2 f}\)

input
Int[Cot[e + f*x]^3*Sqrt[a + b*Sec[e + f*x]^2],x]
 
output
((-4*Sqrt[a]*ArcTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a]] + (2*(2*a + b)*Ar 
cTanh[Sqrt[a + b*Sec[e + f*x]^2]/Sqrt[a + b]])/Sqrt[a + b])/2 + Sqrt[a + b 
*Sec[e + f*x]^2]/(1 - Sec[e + f*x]^2))/(2*f)
 

3.4.80.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 110
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Simp[(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 
1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f))   Int[(a + b*x)^(m + 1) 
*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + 
p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && Gt 
Q[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, 
 m + n])
 

rule 174
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))* 
((c_.) + (d_.)*(x_))), x_] :> Simp[(b*g - a*h)/(b*c - a*d)   Int[(e + f*x)^ 
p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d)   Int[(e + f*x)^p/(c + d 
*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 354
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_S 
ymbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x 
, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ 
[(m - 1)/2]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4627
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si 
mp[1/f   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x), x] 
, x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[( 
m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || Integers 
Q[2*n, p])
 
3.4.80.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2755\) vs. \(2(91)=182\).

Time = 1.39 (sec) , antiderivative size = 2756, normalized size of antiderivative = 25.28

method result size
default \(\text {Expression too large to display}\) \(2756\)

input
int(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/8/f/(a+b)^(5/2)*((a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc 
(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e 
)^2+a+b)/((1-cos(f*x+e))^2*csc(f*x+e)^2-1)^2)^(1/2)*((1-cos(f*x+e))^2*csc( 
f*x+e)^2-1)*(8*a^(3/2)*ln(4*(-a*(1-cos(f*x+e))^2*csc(f*x+e)^2+a^(1/2)*(a*( 
1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f* 
x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)+a)/((1-c 
os(f*x+e))^2*csc(f*x+e)^2+1))*(1-cos(f*x+e))^2*(a+b)^(3/2)*csc(f*x+e)^2-(a 
+b)^(3/2)*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4 
-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^ 
(1/2)*a*(1-cos(f*x+e))^4*csc(f*x+e)^4-(a+b)^(3/2)*(a*(1-cos(f*x+e))^4*csc( 
f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2 
+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*b*(1-cos(f*x+e))^4*csc(f*x+e 
)^4+8*a^(1/2)*ln(4*(-a*(1-cos(f*x+e))^2*csc(f*x+e)^2+a^(1/2)*(a*(1-cos(f*x 
+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*c 
sc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)+a)/((1-cos(f*x+e) 
)^2*csc(f*x+e)^2+1))*(1-cos(f*x+e))^2*(a+b)^(3/2)*b*csc(f*x+e)^2+a*(a*(1-c 
os(f*x+e))^4*csc(f*x+e)^4+b*(1-cos(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e 
))^2*csc(f*x+e)^2+2*b*(1-cos(f*x+e))^2*csc(f*x+e)^2+a+b)^(1/2)*(1-cos(f*x+ 
e))^2*(a+b)^(3/2)*csc(f*x+e)^2-3*b*(a*(1-cos(f*x+e))^4*csc(f*x+e)^4+b*(1-c 
os(f*x+e))^4*csc(f*x+e)^4-2*a*(1-cos(f*x+e))^2*csc(f*x+e)^2+2*b*(1-cos(...
 
3.4.80.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 289 vs. \(2 (91) = 182\).

Time = 0.56 (sec) , antiderivative size = 1342, normalized size of antiderivative = 12.31 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \]

input
integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
[1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 
 + ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(128*a^4*cos(f*x + e)^8 + 2 
56*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 32*a*b^3*cos(f*x + 
e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x + e)^6 + 10*a*b^2 
*cos(f*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/ 
cos(f*x + e)^2)) + ((2*a + b)*cos(f*x + e)^2 - 2*a - b)*sqrt(a + b)*log(2* 
((8*a^2 + 8*a*b + b^2)*cos(f*x + e)^4 + 2*(4*a*b + 3*b^2)*cos(f*x + e)^2 + 
 b^2 + 4*((2*a + b)*cos(f*x + e)^4 + b*cos(f*x + e)^2)*sqrt(a + b)*sqrt((a 
*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(cos(f*x + e)^4 - 2*cos(f*x + e)^2 + 
 1)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f), 1/8*(4*(a + b)*sqrt((a*cos(f 
*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^2 - 2*((2*a + b)*cos(f*x + e)^ 
2 - 2*a - b)*sqrt(-a - b)*arctan(1/2*((2*a + b)*cos(f*x + e)^2 + b)*sqrt(- 
a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a^2 + a*b)*cos(f*x + 
e)^2 + a*b + b^2)) + ((a + b)*cos(f*x + e)^2 - a - b)*sqrt(a)*log(128*a^4* 
cos(f*x + e)^8 + 256*a^3*b*cos(f*x + e)^6 + 160*a^2*b^2*cos(f*x + e)^4 + 3 
2*a*b^3*cos(f*x + e)^2 + b^4 - 8*(16*a^3*cos(f*x + e)^8 + 24*a^2*b*cos(f*x 
 + e)^6 + 10*a*b^2*cos(f*x + e)^4 + b^3*cos(f*x + e)^2)*sqrt(a)*sqrt((a*co 
s(f*x + e)^2 + b)/cos(f*x + e)^2)))/((a + b)*f*cos(f*x + e)^2 - (a + b)*f) 
, 1/8*(4*(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)^ 
2 + 2*((a + b)*cos(f*x + e)^2 - a - b)*sqrt(-a)*arctan(1/4*(8*a^2*cos(f...
 
3.4.80.6 Sympy [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \cot ^{3}{\left (e + f x \right )}\, dx \]

input
integrate(cot(f*x+e)**3*(a+b*sec(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x)**3, x)
 
3.4.80.7 Maxima [F]

\[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{3} \,d x } \]

input
integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^3, x)
 
3.4.80.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 574 vs. \(2 (91) = 182\).

Time = 0.90 (sec) , antiderivative size = 574, normalized size of antiderivative = 5.27 \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {{\left (\frac {16 \, a \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} + \sqrt {a + b}}{2 \, \sqrt {-a}}\right )}{\sqrt {-a}} - \frac {4 \, {\left (2 \, a + b\right )} \arctan \left (-\frac {\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}}{\sqrt {-a - b}}\right )}{\sqrt {-a - b}} + \frac {2 \, {\left (2 \, a + b\right )} \log \left ({\left | -{\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a + b\right )} + \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{\sqrt {a + b}} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \frac {2 \, {\left ({\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} {\left (a - b\right )} - {\left (a + b\right )}^{\frac {3}{2}}\right )}}{{\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )}^{2} - a - b}\right )} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}{8 \, f} \]

input
integrate(cot(f*x+e)^3*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
1/8*(16*a*arctan(-1/2*(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2 
*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 
2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) + sqrt(a + b))/sqrt(-a))/sqrt(-a) - 4* 
(2*a + b)*arctan(-(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x 
 + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b* 
tan(1/2*f*x + 1/2*e)^2 + a + b))/sqrt(-a - b))/sqrt(-a - b) + 2*(2*a + b)* 
log(abs(-(sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e) 
^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f 
*x + 1/2*e)^2 + a + b))*(a + b) + sqrt(a + b)*(a - b)))/sqrt(a + b) + sqrt 
(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1 
/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - 2*((sqrt(a + b)*tan(1/2*f* 
x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 
2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b))*(a - b) 
- (a + b)^(3/2))/((sqrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x 
 + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b* 
tan(1/2*f*x + 1/2*e)^2 + a + b))^2 - a - b))*sgn(cos(f*x + e))/f
 
3.4.80.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^3\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \]

input
int(cot(e + f*x)^3*(a + b/cos(e + f*x)^2)^(1/2),x)
 
output
int(cot(e + f*x)^3*(a + b/cos(e + f*x)^2)^(1/2), x)